Pattern of localisation error in patients with stroke to sound processed by a binaural sound space processor.
نویسندگان
چکیده
OBJECTIVE The ability of 46 patients with supratentorial stroke and 15 healthy subjects to localise sounds was tested using an apparatus with headphone and sound space processor. METHODS With a binaural sound space processor, sounds were randomly presented from seven directions in the 180 degree frontal area of the subject at intervals of 30 degrees. The subject was asked to imagine a clock face through the horizontal plane passing through the subject's ears with 12 o'clock denoting a sound from directly in front of the subject. After each sound, the subject indicated the direction from which he or she thought the sound came by mentioning the corresponding hour hand on the clock face; therefore, the answer directions were also separated by 30 degrees. A total of 21 sounds with three sounds from each direction, were presented in random order. The error between the presented direction and the answered direction of each sound was calculated. RESULTS The mean absolute error which does not distinguish whether an error was in the counterclockwise or clockwise direction, was larger in the patients with stroke than in the healthy subjects. Overall, the patients with stroke who had right brain damage (n=29) had a larger mean absolute error than those who had left brain damage (n=17). The patients with right brain damage did not show any systematic deviation such as a rightward error or leftward error. CONCLUSION A right brain lesion or left brain lesion can cause a patient to have error in sound localisation, and patients with right brain damage generally have a larger mean absolute error of sound localisation. The difference in the mean absolute error of sound localisation between patients with stroke with right brain damage and those with stroke with left brain damage may be explained by the inattention theory of hemispatial neglect.
منابع مشابه
Using the eigenvalues of the sound equation to determine the properties of materials
In this article, the eigenvalues of the sound equation are used to determine the refractive index. This refractive index helps to extract the acoustic components of the material such as the speed of sound in the material. This will help in identifying targets, especially in the field of signal processing. For this purpose, a method has been extracted that can be used to establish a relation bet...
متن کاملBinaural sound source localisation and tracking using a dynamic spherical head model
This paper introduces a binaural model for the localisation and tracking of a moving sound source’s azimuth in the horizontal plane. The model uses a nonlinear state space representation of the sound source dynamics including the current position of the listener’s head. The state is estimated via an unscented Kalman Filter by comparing the interaural level and time differences of the binaural s...
متن کاملThe impact of wind-generated bubble layer on matched field sound source localization in shallow water (Research Article)
This paper investigates the effect of the wind-generated bubble layer on the underwater sound source localization in the Persian Gulf shallow-water environment through computer simulation and the matched field processing technique. An underwater sound source of 2-10 kHz located at depths of 10, 45, and 75 m was considered at a distance of 4 km from a linear vertical receiver array. The estimati...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurology, neurosurgery, and psychiatry
دوره 70 1 شماره
صفحات -
تاریخ انتشار 2001